Crystal Structure

Communications

ISSN 0108-2701

4,5-Dichlorophthalic acid-trans-cinnamamide (1/2) and 3,4,5,6-tetrachlorophthalic acid-trans-cinnamamide ($\mathbf{1 / 2)}$

Hosomi, Ohba and Ito

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

4,5-Dichlorophthalic acid-transcinnamamide (1/2) and 3,4,5,6-tetrachlorophthalic acid-trans-cinnamamide (1/2)

Hiroyuki Hosomi, ${ }^{\text {a }}$ Shigeru Ohba ${ }^{\text {a* }}$ and Yoshikatsu Ito ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan, and ${ }^{\mathbf{b}}$ Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
Correspondence e-mail: ohba@chem.keio.ac.jp

Received 8 September 2000
Accepted 27 September 2000
Data validation number: IUC0000270
In the two title adducts, $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}$ and $\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{Cl}_{4} \mathrm{O}_{4} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}$, respectively, the dicarboxylic acid is connected to two cinnamamide molecules through cyclic hydrogen bonds. The arrangement of the $\mathrm{C}=\mathrm{C}$ bonds of neighbouring cinnamamide molecules is twisted.

Comment

The [2+2] photodimerization of trans-cinnamamides exclusively produces the α-type photodimer (Hung et al., 1972). Photolysis of cocrystals of trans-cinnamamide with dicarboxylic acids have been investigated (Ito et al., 2000). The main photoproduct was the β-dimer of cinnamamide for phthalic acid bis(trans-cinnamamide). However, the arrangement of the $\mathrm{C}=\mathrm{C}$ bond between the neighbouring cinnamamide molecules is twisted and not suitable for [2+2] photodimerization. A pedal-like conformational change before photodimerization is expected.

The $\mathrm{C}=\mathrm{C}$ bond axes of the neighbouring cinnamamide molecules adopt a twisted arrangement in both (I) and (II), as observed in the cocrystals with phthalic acid. The distance between the centres of the $\mathrm{C} 20=\mathrm{C} 21$ and $\mathrm{C} 29=\mathrm{C} 30$ bonds is 4.453 (4) \AA in (I), and that for the $\mathrm{C} 22=\mathrm{C} 23$ and $\mathrm{C} 31=\mathrm{C} 32$ bonds is 4.146 (4) \AA in (II). The hydrogen-bond networks in (I) and (II) are similar to one another. Both H atoms of the NH_{2} groups are involved in the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a two-dimensional sheet.

Powdered crystals were spread between two Pyrex plates and irradiated with a 400 W high-pressure mercury lamp for 20 h under an argon stream at room temperature. The yields of β-dimer of cinnamamide from (I) and (II) were estimated by thin-layer chromatography and NMR spectra to be 31 and 19%, respectively.

(I)

(II)

Experimental

All the compounds were commercially available. Crystals were grown by slow evaporation from 2-propanol solution of the mixture of di-chloro- or tetrachlorophthalic acid and trans-cinnamamide (1:2).

Compound (I)

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO} \quad Z=2$
$M_{r}=529.38$
Triclinic, $P \overline{1}$
$a=9.6821$ (7) A
$D_{x}=1.410 \mathrm{Mg} \mathrm{m}^{-3}$
$a=9.6821$ (7) A
Mo $K \alpha$ radiation
$b=18.4661$ (12) \AA
Cell parameters from 25
$c=7.4203(5) \AA$ reflections
$\alpha=93.611(5)^{\circ}$
$\theta=14.3-15.0^{\circ}$
$\beta=105.676(5)^{\circ}$
$\mu=0.305 \mathrm{~mm}^{-1}$
$\begin{aligned} \beta & =10.676(5) \\ \gamma & =100.636(5)^{\circ}\end{aligned}$
$T=298$ (1) K
Plate, colourless
$V=1246.4(2) \AA^{3}$
Data collection
Rigaku AFC-7R diffractometer
$R_{\text {int }}=0.013$
$\theta-2 \theta$ scans
$\theta_{\text {max }}=27.5^{\circ}$
Absorption correction: ψ scan
(North et al., 1968)
$h=-13 \rightarrow 13$
$T_{\text {min }}=0.745, T_{\text {max }}=0.955$
6174 measured reflections
5732 independent reflections
$k=-24 \rightarrow 24$
$l=-10 \rightarrow 0$
3 standard reflections every 150 reflections
4328 reflections with $I>2 \sigma(I)$
intensity decay: none

Refinement

Refinement on F^{2}
All H -atom parameters refined
$R(F)=0.047$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.10 P)^{2}+0.30 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.198$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.48 \mathrm{e}_{\mathrm{A}^{-3}}{ }^{-3}$
$\Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}$

5732 reflections
413 parameters
$0.70 \times 0.40 \times 0.15 \mathrm{~mm}$

Table 1
Selected geometric parameters (\AA) for (I).

C11-C15	$1.720(3)$	O8-C28	$1.251(3)$
C12-C14	$1.731(3)$	N9-C19	$1.331(4)$
O3-C11	$1.204(3)$	N10-C28	$1.322(3)$
O4-C11	$1.317(3)$	C19-C20	$1.482(4)$
O5-C18	$1.307(3)$	C20-C21	$1.298(4)$
O6-C18	$1.206(3)$	C28-C29	$1.481(4)$
O7-C19	$1.252(3)$	C29-C30	$1.315(3)$

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4-H4 $\cdots \mathrm{O} 7$	$0.83(4)$	$1.78(4)$	$2.553(3)$	$155(5)$
O5-H5	O8	$0.84(4)$	$1.69(4)$	$2.491(3)$
N9-H9A \cdots O3	$1.06(3)$	$1.86(3)$	$2.905(4)$	$158(4)$
N9-H9B (5)	168	$0.87(4)$	$2.35(5)$	$3.081(3)$
N10-H10A \cdots O6	$1.01(4)$	$1.94(4)$	$2.923(3)$	$142(5)$
N10-H10B \cdots O7 $^{\mathrm{ii}}$	$0.78(4)$	$2.27(4)$	$3.039(3)$	$175(4)$

Symmetry codes: (i) $-x,-y,-z$; (ii) $1-x,-y, 1-z$.

Compound (II)

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{Cl}_{4} \mathrm{O}_{4} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}$	$Z=2$
$M_{r}=598.27$	$D_{x}=1.495 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.937(2) \AA$	Cell parameters from 25
$b=15.895(4) \AA$	reflections
$c=9.015(2) \AA$	$\theta=14.4-15.0^{\circ}$
$\alpha=93.48(2)^{\circ}$	$\mu=0.490 \mathrm{~mm}^{-1}$
$\beta=110.57(1)^{\circ}$	$T=298(1) \mathrm{K}$
$\gamma=91.58(2)^{\circ}$	Plate, colourless
$V=1328.8(5) \AA^{\circ}$	$0.60 \times 0.60 \times 0.15 \mathrm{~mm}$

Data collection

Rigaku AFC-7R diffractometer $\theta-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.772, T_{\text {max }}=0.929$
6442 measured reflections
6092 independent reflections
4659 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.029 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-13 \rightarrow 0 \\
& k=-21 \rightarrow 21 \\
& l=-12 \rightarrow 12 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R(F)=0.038$
$w R\left(F^{2}\right)=0.113$
$S=1.06$
6092 reflections
423 parameters
All H -atom parameters refined

Table 3
Selected geometric parameters (\AA) for (II).

$\mathrm{Cl} 1-\mathrm{C} 18$	$1.722(2)$	$\mathrm{O} 9-\mathrm{C} 21$	$1.249(3)$
$\mathrm{Cl} 2-\mathrm{C} 17$	$1.720(3)$	$\mathrm{O} 10-\mathrm{C} 30$	$1.265(3)$
$\mathrm{Cl} 3-\mathrm{C} 16$	$1.718(2)$	$\mathrm{N} 11-\mathrm{C} 21$	$1.313(3)$
$\mathrm{Cl} 4-\mathrm{C} 15$	$1.725(2)$	$\mathrm{N} 12-\mathrm{C} 30$	$1.306(3)$
$\mathrm{O} 5-\mathrm{C} 13$	$1.208(2)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.472(4)$
$\mathrm{O} 6-\mathrm{C} 13$	$1.312(2)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.311(3)$
$\mathrm{O} 7-\mathrm{C} 20$	$1.294(2)$	$\mathrm{C} 30-\mathrm{C} 31$	$1.467(3)$
$\mathrm{O} 8-\mathrm{C} 20$	$1.210(2)$	$\mathrm{C} 31-\mathrm{C} 32$	$1.326(3)$

Table 4
Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O6-H6 \cdots O9	$0.93(4)$	$1.68(4)$	$2.575(3)$	$163(3)$
O7-H7 O10	$1.03(4)$	$1.43(4)$	$2.444(2)$	$167(4)$
N11-H11A \cdots O5	$0.81(3)$	$2.15(3)$	$2.949(3)$	$169(3)$
N11-H11B \cdots O7 $^{\text {i }}$	$0.89(4)$	$2.23(4)$	$3.120(3)$	$177(3)$
N12-H12A \cdots O8 $^{\text {(ii }}$	$0.88(3)$	$1.97(3)$	$2.835(3)$	$166(2)$
N12-H12B \cdots O 2	$0.88(3)$	$2.14(3)$	$3.001(2)$	$167(3)$

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $-x,-y,-z$.
The refined bond distances involving the H atoms are 0.78 (4)1.06 (5) and 0.81 (3)-1.03 (4) \AA for (I) and (II), respectively.

For both compounds, data collection and cell refinement: $\mathrm{MSC} /$ AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: TEXSAN.

The authors thank Mr Akihiro Kondo for preparing the title crystals.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Hung, J. D., Lahav, M., Luwisch, M. \& Schmidt, G. M. J. (1972). Isr. J. Chem. 10, 585-599.
Ito, Y., Hosomi, H. \& Ohba, S. (2000). Tetrahedron. In the press.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1999). TEXSAN. Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

