Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

4,5-Dichlorophthalic acid-*trans*-cinnamamide (1/2) and 3,4,5,6-tetrachlorophthalic acid-*trans*-cinnamamide (1/2)

Hosomi, Ohba and Ito

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Acta Crystallographica Section C **Crystal Structure** Communications ISSN 0108-2701

4,5-Dichlorophthalic acid-transcinnamamide (1/2) and 3,4,5,6-tetrachlorophthalic acid-trans-cinnamamide (1/2)

Hiroyuki Hosomi,^a Shigeru Ohba^a* and Yoshikatsu Ito^b

^aDepartment of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan, and ^bDepartment of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan Correspondence e-mail: ohba@chem.keio.ac.jp

Received 8 September 2000 Accepted 27 September 2000

Data validation number: IUC0000270

In the two title adducts, $C_8H_4Cl_2O_4 \cdot 2C_9H_9NO$ and $C_8H_2Cl_4O_4 \cdot 2C_9H_9NO$, respectively, the dicarboxylic acid is connected to two cinnamamide molecules through cyclic hydrogen bonds. The arrangement of the C=C bonds of neighbouring cinnamamide molecules is twisted.

Comment

The [2+2] photodimerization of trans-cinnamamides exclusively produces the α -type photodimer (Hung *et al.*, 1972). Photolysis of cocrystals of trans-cinnamamide with dicarboxylic acids have been investigated (Ito et al., 2000). The main photoproduct was the β -dimer of cinnamamide for phthalic acid bis(trans-cinnamamide). However, the arrangement of the C=C bond between the neighbouring cinnamamide molecules is twisted and not suitable for [2+2] photodimerization. A pedal-like conformational change before photodimerization is expected.

The C=C bond axes of the neighbouring cinnamamide molecules adopt a twisted arrangement in both (I) and (II), as observed in the cocrystals with phthalic acid. The distance between the centres of the C20=C21 and C29=C30 bonds is 4.453 (4) Å in (I), and that for the C22=C23 and C31=C32 bonds is 4.146 (4) Å in (II). The hydrogen-bond networks in (I) and (II) are similar to one another. Both H atoms of the NH_2 groups are involved in the $N-H \cdots O$ hydrogen bonds to form a two-dimensional sheet.

Powdered crystals were spread between two Pyrex plates and irradiated with a 400 W high-pressure mercury lamp for 20 h under an argon stream at room temperature. The yields of β -dimer of cinnamamide from (I) and (II) were estimated by thin-layer chromatography and NMR spectra to be 31 and 19%, respectively.

Experimental

All the compounds were commercially available. Crystals were grown by slow evaporation from 2-propanol solution of the mixture of dichloro- or tetrachlorophthalic acid and trans-cinnamamide (1:2).

Compound (I)

Crystal data C8H4Cl2O4·2C9H9NO Z = 2 $M_r = 529.38$ $D_x = 1.410 \text{ Mg m}^{-3}$ Triclinic, P1 Mo Ka radiation a = 9.6821 (7) ÅCell parameters from 25 b = 18.4661 (12) Åreflections $\theta = 14.3 - 15.0^{\circ}$ c = 7.4203 (5) Å $\mu = 0.305 \text{ mm}^{-1}$ $\alpha = 93.611 \ (5)^{\circ}$ $\beta = 105.676(5)^{\circ}$ T = 298 (1) K $\nu = 100.636 (5)^{\circ}$ Plate, colourless V = 1246.4 (2) Å³ $0.70 \times 0.40 \times 0.15 \text{ mm}$ Data collection

Rigaku AFC-7R diffractometer $R_{\rm int}=0.013$ θ –2 θ scans $\theta_{\rm max} = 27.5^{\circ}$ Absorption correction: ψ scan $h = -13 \rightarrow 13$ $k = -24 \rightarrow 24$ (North et al., 1968) $T_{\min} = 0.745, \ T_{\max} = 0.955$ $l = -10 \rightarrow 0$ 6174 measured reflections 3 standard reflections 5732 independent reflections every 150 reflections 4328 reflections with $I > 2\sigma(I)$ intensity decay: none

Refinement

Refinement on F^2	All H-atom parameters refined
R(F) = 0.047	$w = 1/[\sigma^2(F_o^2) + (0.10P)^2 + 0.30P]$
$wR(F^2) = 0.198$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.28	$(\Delta/\sigma)_{\rm max} = 0.001$
5732 reflections	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
413 parameters	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å) for (I).

Cl1-C15	1.720 (3)	O8-C28	1.251 (3)
Cl2-C14	1.731 (3)	N9-C19	1.331 (4)
O3-C11	1.204 (3)	N10-C28	1.322 (3)
O4-C11	1.317 (3)	C19-C20	1.482 (4)
O5-C18	1.307 (3)	C20-C21	1.298 (4)
O6-C18	1.206 (3)	C28-C29	1.481 (4)
O7-C19	1.252 (3)	C29-C30	1.315 (3)

Table 2

Hydrogen-bonding geometry	(Å, °) for	(I).
---------------------------	-------	-------	------

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
04–H4···O7	0.83 (4)	1.78 (4)	2.553 (3)	155 (5)
O5−H5···O8	0.84 (4)	1.69 (4)	2.491 (3)	158 (4)
N9−H9A···O3	1.06 (3)	1.86 (3)	2.905 (4)	168 (5)
$N9-H9B\cdotsO8^{i}$	0.87 (4)	2.35 (5)	3.081 (3)	142 (5)
N10−H10A···O6	1.01 (4)	1.94 (4)	2.923 (3)	165 (3)
N10-H10 B ···O7 ⁱⁱ	0.78 (4)	2.27 (4)	3.039 (3)	175 (4)

Symmetry codes: (i) -x, -y, -z; (ii) 1 - x, -y, 1 - z.

Compound (II)

Crystal data

$\begin{array}{l} C_8H_2Cl_4O_4\cdot 2C_9H_9NO\\ M_r = 598.27\\ Triclinic, P\overline{1}\\ a = 9.937~(2) Å\\ b = 15.895~(4) Å\\ c = 9.015~(2) Å\\ \alpha = 93.48~(2)^\circ\\ \beta = 110.57~(1)^\circ\\ \gamma = 91.58~(2)^\circ\\ V = 1328.8~(5) Å^3 \end{array}$

Data collection

Rigaku AFC-7*R* diffractometer θ -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.772$, $T_{max} = 0.929$ 6442 measured reflections 6092 independent reflections 4659 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 R(F) = 0.038 $wR(F^2) = 0.113$ S = 1.066092 reflections 423 parameters All H-atom parameters refined

Z = 2
$D_x = 1.495 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 25
reflections
$\theta = 14.4 - 15.0^{\circ}$
$\mu = 0.490 \text{ mm}^{-1}$
T = 298 (1) K
Plate, colourless
$0.60 \times 0.60 \times 0.15 \text{ mm}$

 $\begin{aligned} R_{\text{int}} &= 0.029\\ \theta_{\text{max}} &= 27.5^{\circ}\\ h &= -13 \rightarrow 0\\ k &= -21 \rightarrow 21\\ l &= -12 \rightarrow 12\\ 3 \text{ standard reflections}\\ \text{every 150 reflections}\\ \text{intensity decay: none} \end{aligned}$

$w = 1/[\sigma^2(F_o^2) + (0.0471P)^2]$
+ 0.6677P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.27 \text{ e} \text{ \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.27 \mathrm{e} \mathrm{\AA}^{-3}$

Table 3

Selected geometric parameters (Å) for (II).

Cl1-C18	1.722 (2)	O9-C21	1.249 (3)
Cl2-C17	1.720 (3)	O10-C30	1.265 (3)
Cl3-C16	1.718 (2)	N11-C21	1.313 (3)
Cl4-C15	1.725 (2)	N12-C30	1.306 (3)
O5-C13	1.208 (2)	C21-C22	1.472 (4)
O6-C13	1.312 (2)	C22-C23	1.311 (3)
O7-C20	1.294 (2)	C30-C31	1.467 (3)
O8-C20	1.210 (2)	C31-C32	1.326 (3)

Table 4		
Hydrogen-bonding geometry (Å,	°) for	(II).

$\overline{D-\mathrm{H}\cdot\cdot\cdot A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
	0.02 (4)	1 (0 (4)	2,575 (2)	1(2(2)
$O6 - H6 \cdots O9$ $O7 - H7 \cdots O10$	0.93 (4)	1.68 (4)	2.575 (3)	163 (3)
N11-H11A···O5	0.81 (3)	2.15 (3)	2.949 (3)	169 (3)
$\begin{array}{c} N11 - H11B \cdots O7^{1} \\ N12 - H12A \cdots O8 \end{array}$	0.89 (4) 0.88 (3)	2.23 (4) 1.97 (3)	3.120 (3) 2.835 (3)	177 (3) 166 (2)
$N12 - H12B \cdots O9^{ii}$	0.88 (3)	2.14 (3)	3.001 (2)	167 (3)

Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) -x, -y, -z.

The refined bond distances involving the H atoms are 0.78 (4)– 1.06 (5) and 0.81 (3)–1.03 (4) Å for (I) and (II), respectively.

For both compounds, data collection and cell refinement: *MSC/ AFC Diffractometer Control Software* (Molecular Structure Corporation, 1993); data reduction: *TEXSAN* (Molecular Structure Corporation, 1999); program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *TEXSAN*.

The authors thank Mr Akihiro Kondo for preparing the title crystals.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Hung, J. D., Lahav, M., Luwisch, M. & Schmidt, G. M. J. (1972). Isr. J. Chem. 10, 585–599.

Ito, Y., Hosomi, H. & Ohba, S. (2000). Tetrahedron. In the press.

Molecular Structure Corporation (1993). *MSC/AFC Diffractometer Control Software*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Molecular Structure Corporation (1999). *TEXSAN*. Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.